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I. IDEAL GROWTH-RATE IS NOT IMPROVED BY ALLOWING INCREASED NOISE

The growth of a population of cells in exponential phase satisfies the following ODE:

∂N(t)

∂t
= rN(t) (1)

where the growth-rate, r, may be rewritten as a statistical average:

r = 〈f(φ, P (τ))〉φ (2)

P (τ) is the division time distribution, φ is a variable parametrized over R which carries any envi-

ronmental dependence (e.g. temperature, nutrient concentration), N(t) is the number of cells at

time t, f is an undetermined function, and 〈〉φ indicates averaging over all possible environmental

states. The solution to (1) is of course the familiar exponential growth expression:

N(t) = N0 exp (rt) (3)

where N0 is the initial number. For the simplified case where every cell divides in time τ ≡ µ (such

that N(µ) = 2N0) we may find r = ln(2)
µ . In the treatment of the real case for arbitrary P (τ), we

rewrite f (P (τ), φ) the following way:

f(φ, P (τ)) =

ˆ ∞
0

g(τ, φ)P (τ)dτ (4)

Where g(τ, φ) is the effective growth-rate of an individual cell, which unrestricted will divide in

time τ , subject to additional environmental constraints under conditions φ. For example, suppose

φ specifies that the environment is not rich enough to sustain the nutrient uptake required for a

cell to divide in under 20 minutes. In this case, g(30, φ) = 1
30 , but g(10, φ) = 0 as the cell will die

before it divides. Now consider that each environmental state is found with some probability P (φ).

Averaging over these states yields:

〈f(φ, P (τ))〉φ =

ˆ ∞
0

P (φ)

[ˆ ∞
0

g(τ, φ)P (τ)dτ

]
dφ (5)

Rearranging:

〈f(φ, P (τ))〉φ =

ˆ ∞
0

ˆ ∞
0

g(τ, φ)P (τ)P (φ)dτdφ (6)

We may note g(τ, φ)P (τ)P (φ) is always positive and g(τ, φ) is bounded (i.e. growth-rate is al-

ways finite). Further considering only the case where g(τ, φ), P (τ), P (φ) are continuous and´∞
0 g(τ, φ)P (τ)dτ is continuous as a function of φ, we can freely switch the order of integration[1]:

〈f(φ, P (τ))〉φ =

ˆ ∞
0

ˆ ∞
0

g(τ, φ)P (τ)P (φ)dφdτ =

ˆ ∞
0

[ˆ
φ
P (φ)g(τ, φ)dφ

]
P (τ)dτ ≡

ˆ ∞
0

h(τ)P (τ)dτ

(7)
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Now we know three things about h(τ): h(0) = 0 - a cell cannot divide in 0 time, h(∞) = 0 - a cell

“dividing in infinite time” does not grow, and further that for some τ = τ ′, h(τ ′) > 0 - or else there

is no growth at all. Therefore we can also say that there exists some τ = τ∗ where h(τ∗) attains

its maximum value which is greater than zero. This implies that the maximum may be achieved

when the distribution attains a delta function:

max(r(P (τ)))⇒ P (τ) = δ(τ, τ∗) (8)

Thus given any cell cycle duration distribution with finite width, there exists a narrower one which

attains the same growth-rate or greater.

II. DERIVATION OF THE TRANSITION PROBABILITY M(τ → τ ′)

Please note that some of this material is also presented in the main text. We repeat it here to

maintain continuity of the material. We want to take into account two sources of regulation for cell

cycle duration - optimization of protein synthesis rates to the current environment (instantaneous

information), and the maintainence of proteome similarity to the mother cell (inherited informa-

tion). Let us begin with the shorter argument - the comparison of proteome composition between

mother and daughter cells.

A. Construction: Inherited Information

At the beginning of a cell cycle, a cell’s proteome is entirely inherited from proteins present in

the mother cell. Due to partition noise, the probability of inheriting m proteins from a mother

cell containing N proteins is given by the symmetric binomial distribution P (m) = N !
m!(N−m)!

1
2N

For N very large, this distribution is well approximated by a Gaussian distribution of mean N
2 and

variance N
4 . These inherited proteins constitute roughly half of the cell’s final proteome (or the

proteome of the cell at the time of its division) though this fraction differs based on the number of

proteins inherited. Furthermore, there exists a map between the proteome of a cell and its cycle

duration. The greater number of proteins shared between the mother and daughter cell, the smaller

the difference between their cycle durations. As this inheritance is roughly normally distributed,

we approximate the cycle duration τ ′ (of the daughter cell) to be normally distributed with mean

τ (the cycle duration of the mother cell) and some unknown variance σ2
2:
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M2(τ → τ ′) = A exp

[
− 1

2σ2
2

(τ ′ − τ)2

]
(9)

B. Construction: Instantaneous Information

Let us begin by describing the simplest construction of the constant-adder model: let us define

a mean protein/DNA synthesis rate of k proteins/DNA per minute, and say that the cell must

synthesize additional N proteins/DNA during its cell cycle. Here we denote the probability of

observing N proteins at time t as π(N, t). From a uni-directional random-walker model we get for

N ≥ 1:

∂π(N, t)

∂t
= k [π(N − 1, t)− π(N, t)]

for N equals zero: ∂π(0,t)
∂t = −kπ(0, t). Thus (normalizing):

π(0, t) = k exp(−kt)

Suppose:

π(N, t) =
kN+1

N !
tNe−kt

Then:

∂π(N + 1, t)

∂t
= k

[
kN+1

N !
tNe−kt − π(N + 1, t)

]
Which implies:

π(N + 1, t) =
k ∗ kN+1

(N + 1)j!
tN+1e−kt

Therefore, by induction:

π(N, t) =
kN+1

N !
tNe−kt

We may note that this is simply a Gamma distribution:

π(N, t) =
kN+1

Γ(N + 1)
tNe−kt (10)

with a mean of µ = N+1
k and variance σ2

1 = N+1
k2 . Since k depends on the environmental condition

φ, both µ and σ1 depend on φ. As long as N � 1, this distribution is suitably symmetric, and we
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may well approximate the transition probability with a Gaussian function (in terms of t ≡ τ ′) with
the given mean and variance:

P (N, t) ≈M1(τ ′) ≡ 1√
2πσ1

exp

[
− 1

2σ2
1

(
τ ′ − µ

)2] (11)

The total transition probability from τ of the mother cell to τ ′ of the daughter cell should balance

the inherited information with the process of protein/DNA synthesis. Therefore we expect

M(τ → τ ′) ∼M1(τ ′)M2(τ → τ ′) (12)

There is a problem with this construction, however, because taking a look at the product of our

two transition probabilities (where the normalization is absorbed into the constant A):

M(τ → τ ′) = A exp

[
− 1

2σ2
1

(τ − µ)2

]
exp

[
− 1

2σ2
2

(τ ′ − τ)2

]
(13)

we can see that the most probable state for τ ′ is always between τ and µ regardless of the value

of σ1 or σ2. This contradicts the result from the constant adder model and experiment which

predicts a weak negative correlation between adjacent generations at steady state[2, 3]. So in order

to construct the most general form for the transition probability that can reproduce both response

and steady-state dynamics we will also include some current state (τ) dependence in the term

representing instantaneous information constructed below.

In what follows we will describe what may be the original “sizer”, or mass-accumulation, model

described by Bremer and Chuang in 1981 [4]. We do not wish to imply that we believe the “sizer”

model to be a good substitute for the “constant adder” that has proven so robust in recent studies

[2, 5], but merely that when interpreted as a product of two weighted regulatory tendencies (mass-

accumulation and proteome maintenance), the “constant adder” can be even more widely applied

to cell populations experiencing variable environmental conditions. We begin by breaking down

the cell cycle into three smaller stages. Consider the cell cycle to be composed of three periods τA,

before the initiation of DNA replication, τB, during replication, and τC after replication:

τ = τA + τB + τC (14)

Bremer and Chuang found that the time between associated points in replication from generation

to generation (e.g. the time between the initiation of replication in the mother cell and daughter cell

or termination of replication between cells) were highly conserved. This implies (where generation

n is denoted τn):

τB = constant ≡ B (15)
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and furthermore:

τCn−1 + τAn = constant ≡ D (16)

So we can write down an expression for the nth division time in terms of the preceding n−1 division

time:

τn = τAn + τBn + τCn =
(
D − τCn−1

)
+B + τCn = (D +B) + τCn − τCn−1 (17)

Now, D +B is simply the mean the total cycle time (relabeling it µ). With this we have:

τn = µ+ τCn − τCn−1 (18)

Continuing, we know τCn is just some fraction α1 of the total mean and similarly τCn−1 is some

fraction α2 of the total division time τn−1:

τn = µ+ α1µ− α2τn−1 (19)

Approximating the fraction of the cell cycle accounted for by region C as constant across each

generation, i.e. α1 = α2 ≡ α yields:

τn = µ+ αµ− ατn−1 = µ+ α (µ− τn−1) (20)

Therefore, on average, we have

〈τn〉 = µ+ αµ− ατn−1 = µ+ α (µ− 〈τn−1〉) (21)

Similarly, we want an expression for the variance:

σ2 (τn) = σ2
(
µ+ τCn − τCn−1

)
= σ2

(
µ− τCn−1

)
+ σ2

(
τCn
)

= σ2
(
τCn
)
≡ σ2

1 (22)

Applying the stochastic protein synthesis argument above restricted to period C yields:

M1(τn−1 → τn) ≈ A exp

[
1

2σ2
1

(τn + ατn−1 − (1 + α)µ)2

]
(23)

We have provided physiological motivation for a weighted averaging of the current state and the

mean of the total distribution; however, as we are primarily interested in a generalizable phe-

nomenological model and are unable to retrieve the value for α from experiment, we will use the

symmetric average α = 1 during data fitting for simplicity. Though this parameter selection loses

physiological significance, the trends observed do not meaningfully change when a smaller alpha
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value is used. Putting these two considerations (instantaneous and inherited information) together

we have constructed our desired transition probability:

M(τn−1 → τn) = A exp

[
− 1

2σ2
1

(τn + ατn−1 − (1 + α)µ)2

]
exp

[
− 1

2σ2
2

(τn − τn−1)2

]
(24)

We note that the preceding derivation of the transition probability is heuristic, and was partially

motivated by connections with previous work. We are primarily interested in this approximate

Gaussian model because it admits the analytic treatment below. However, the proposed model does

have strong experimental support from recent quantitative data. For example, the model predicts a

correlation in fluctuation of cell cycle durations: 〈δτ(n)δτ(n′)〉. There exists an analytic result for

this correlation function (see below). The comparison with data from multiple experiments in the

Mother Machine are shown in Fig. S1. We also have directly measured the transition probability

in constant environmental conditions. The measured transition probability compares well with our

model (Fig. S1).
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Figure S1: (A) Experimentally measured cell cycle duration fluctuation correlation function C(n) =

〈δτ(n′)δτ(n′ + n)〉/〈δτ2〉 from Ref. [2] (lines) and our model correlation function derived from the tran-

sition probability in Eq. (36) and Eq. (62) with Π = −1/4 and α = 1 (crosses). The function shows a

negative correlation after 1 generation, consistent with our model. (B) The cell cycle duration distributions

displayed in Figure 1 of the main text scaled by the mean value from each condition. One may note the

shape conservation of the mean scaled distributions. (C) The experimentally measured conditional proba-

bility M(τj/〈τ〉 → τi/〈τ〉)P (τj/〈τ〉) from 1500 data points (collected for this study) is compared with the

proposed model in Eq. (36). Here the distributions from all environmental conditions studied are scaled by

the mean of each distribution and compiled. From these results, our proposed model is able to capture both

the correlation function as well as explicit transition probabilities between difference cell cycle durations.

C. Rewriting in reduced notation and normalization

It now remains to find the normalization of this form as well as the derivation of the stationary

distribution and analytic treatment of the response when µ is perturbed. Before we move forward,

we will introduce some reduced notation to aid in the calculation of the desired quantities. In what

follows, we will use the following notation for pre-normalized Gaussian functions:

exp
[
−γ (x− µ)2

]
≡ G (x, µ, γ) (25)

where γ is a width parameter. In addition, all integration will be conducted over R:
ˆ
≡
ˆ ∞
−∞

(26)
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Thus in this notation:
ˆ
G (x, µ, γ) dx =

√
π

γ
(27)

Introducing the change of variables defined below:

a ≡ α2

2σ2
1

, b ≡ 1

2σ2
2

, x ≡ τ ′ − µ, y ≡ τ − µ (28)

yields the following:

M(y → x) = AG

(
y,
−x
α
, a

)
G (y, x, b) (29)

Additionally, we will find it convenient to label the following quantity:

Π ≡
[
b− a

α

b+ a
α2

]
(30)

We are going to need to compute the products of many Gaussian functions and may utilize the

following identity [6]:

G

(
x, µ1,

1

2σ2
1

)
G

(
x, µ2,

1

2σ2
2

)
= G

(
x,
µ1σ

2
2 + µ2σ

2
1

σ2
2 + σ2

1

,
σ2

2 + σ2
1

2σ2
2σ

2
1

)
G

(
µ1, µ2,

1

2
(
σ2

2 + σ2
1

)) (31)

which becomes simpler in terms of γi ≡ 1
2σ2
i
:

G (x, µ1, γ1)G (x, µ2, γ2) = G

(
x,
µ1γ1 + µ2γ2

γ1 + γ2
, γ1 + γ2

)
G

(
µ1, µ2,

γ1γ2

γ1 + γ2

)
(32)

To compute the normalization constant we will use a delta function as the initial distribution ρ(y)

for convenience:

1 =

ˆ [ˆ
M(y → x)ρ(y)dy

]
dx = A

ˆ [ˆ
G
(
y,−x

α
, a
)
G (y, x, b) δ

(
y − y′

)
dy

]
dx (33)

Evaluating the inner integral and rearranging yields:

1 = A

ˆ
G
(
y′,−x

α
, a
)
G
(
y′, x, b

)
dx = AG

(
y′, 0, (1 + α)2 ab

a+ α2b

)ˆ
G
(
x, y′Π, b+

a

α2

)
dx

(34)

finally, evaluation of the remaining integral yields:

A =

[√
π

b+ a
α2

G

(
y′, 0, (1 + α)2 ab

a+ α2b

)]−1

(35)

This leaves us with the reduced form for the transition probability:

M (y → x) =

√
b+ a

α2

π
G
(
x, yΠ, b+

a

α2

)
(36)
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D. Identification of the stationary state

We want to solve for the distribution P (y) satisfying the relationship:

P (x) =

ˆ
M (y → x)P (y)dy (37)

We will show that this distribution is in fact also Gaussian and will begin with the trial distribution:

ρ(y) = G (y,m, c) (38)

where c is an unknown Gaussian width parameter for the steady state, and m is the unknown

Gaussian center. Using Eq. (36) and Eq. (37), we are left to solve for ρ(x):

ρ(x) =

ˆ √
b+ a

α2

π
G
(
x, yΠ, b+

a

α2

)√ c

π
G (y,m, c) dy (39)

Rearranging yields:

ρ(x) =

√
c

π

√
b+ a

α2

π
G

(
xΠ−1,m,

(
b− a

α

)2
c(

b− a
α

)2
+ c

(
b+ a

α2

))ˆ G

(
y, ...,

(
b− a

α

)2
b+ a

α2

+ c

)
dy (40)

Integration and simplification yields:

ρ(x) =

√√√√√ c
(
b+ a

α2

)2
π
((
b− a

α

)2
+ c

(
b+ a

α2

))G
(
x,mΠ,

c
(
b+ a

α2

)2(
b− a

α

)2
+ c

(
b+ a

α2

)) (41)

We have indeed shown that if a steady state exists, it must be Gaussian. We are now left with

recurrence relations on the mean (where the subscripts indicate the generation number, or the

number of applications of M):

mn+1 = mnΠ (42)

and the width parameter:

cn+1 =
cn
(
b+ a

α2

)2(
b− a

α

)2
+ cn

(
b+ a

α2

) (43)

To find the steady state mean (m∗) we solve:

m∗ = m∗Π

We may note |Π| < 1 whenever 0 < a, b and α ≤ 1. Thus we see m∗ = 0. Similarly for the width

parameter we must solve:

c∗ =
c∗
(
b+ a

α2

)2(
b− a

α

)2
+ c∗

(
b+ a

α2

) (44)
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Simplification yields: (
b− a

α

)2
+ c∗

(
b+

a

α2

)
=
(
b+

a

α2

)2
(45)

and

c∗ =

(
b+ a

α2

)2 − (b− a
α

)2(
b+ a

α2

) =
2ab (1 + α) + a2

(
1
α2 − 1

)
α2b+ a

(46)

Thus we have shown that a stationary solution does exist and that it is in fact Gaussian with the

mean and variance identified above:

P (x) = AG

(
x, 0,

2ab (1 + α) + a2
(

1
α2 − 1

)
α2b+ a

)
(47)

E. Stability of the stationary state

We want to verify the global asymptotic stability of the stationary state. We will do this in two

steps: first verifying the mean, and then the width parameter. As was shown above, we have the

following recurrence relation for the mean:

mn+1 = mnΠ (48)

Stability requires that the sequence mn converges to the stationary mean of zero. Thus the station-

ary mean is stable since the Π is less than one. Now we will treat the width parameter. As with

the mean, stability requires that the sequence cn converges to the stationary width parameter of

c∗. First we want to show that cn converges. To do so, we’ll show that the sequence is monotone

in a bounded set and thus is guaranteed to converge by the monotone sequence theorem. We start

with the recursion relation from above.

cn+1 =
cn
(
b+ a

α2

)2(
b− a

α

)2
+ cn

(
b+ a

α2

) (49)

This implies (after simplification):

cn+2 − cn+1 =

 ((
b+ a

α2

) (
b− a

α

))2((
b− a

α

)2
+ cn+1

(
b+ a

α2

))((
b− a

α

)2
+ cn

(
b+ a

α2

))
 (cn+1 − cn) (50)

and for the object of interest:

sign (cn+2 − cn+1) = sign (cn+1 − cn) (51)
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Therefore our width parameters are monotonic. Evaluating the bounds, we know that the supremum

and infimum of the sequence are contained within the minimum and maximum of the function:

f (x) =
x
(
b+ a

α2

)2(
b− a

α

)2
+ x

(
b+ a

α2

) (52)

We see that:

−∞ < 0 = min (f (x)) ≤ inf (cn) ≤ sup (cn) ≤ max (f (x)) =
(
b+

a

α2

)
<∞ (53)

which verifies the sequence is bounded. Since the sequence converges, we may take the limit:

lim
n→∞

cn+1 = lim
n→∞

cn
(
b+ a

α2

)2(
b− a

α

)2
+ cn

(
b+ a

α2

) (54)

and labelling the limit lim
n→∞

cn = lim
N→∞

cn+1 = c∗, we see that the sequence converges to the station-

ary value. We have shown that there exists a unique stationary state which is globally attractive

for any arbitrary Gaussian initial state. We may note that any normalizable function, excluding

special functions, can be written as a sum of Gaussian functions and so we have shown that there

exists exactly one stationary state which is globally attractive.

F. Calculation of the Autocorrelation Function

We may also calculate the autocorrelation function for constant environmental conditions, gen-

erated from M analytically. Restating M :

M (y → x) = G

(
y,
−x
α
, a

)
G (y, x, b) (55)

which rearranged and simplified becomes:

G
(
x,−αy, a

α2

)
G (x, y, b) = AG

(
x, yΠ,

a

α2
+ b
)

(56)

With this we may write down the mean value of the nth generation beginning at the initial state x:
∞̂

−∞

x′P
(
x′ = y, t = n′ + n|x′ = x, t = n′

)
dx′ = xΠn (57)

where P in the integrand is the probability of a trajectory starting at x and ending at y after

n generations, which from the Chapman-Kolmogorov relation is the repeated application of the

transition probability M over n generations. We now turn to the definition of the autocorrelation

function:

C(n) =

∑M
n′=0 (τ (n′)− µ) (τ (n′ + n)− µ)∑M
n′=0 (τ (n′)− µ) (τ (n′)− µ)

=

∑M
n′=0 x (n′)x (n′ + n)∑M
n′=0 x (n′)x (n′)

(58)
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Noting that these sums may be rewritten as integrals yields:

M∑
n′=0

x
(
n′
)
x
(
n′ + n

)
=

ˆ ∞
−∞

xP (x)

 ∞̂

−∞

x′P
(
x′ = y, t = n′ + n|x′ = x, t = n′

)
dx′

 dx (59)

and
M∑
n′=0

x
(
n′
)
x
(
n′
)

=

ˆ ∞
−∞

xP (x)xdx (60)

where P (x) is the initial stationary distribution. We may use our result in (56) to simplify (60):

ˆ ∞
−∞

xP (x)

 ∞̂

−∞

x′P
(
x′ = y, t = n′ + n|x′ = x, t = n′

)
dx′

 dx =

ˆ ∞
−∞

xP (x)xΠndx (61)

Thus we have:

C (n) =
Πn
´∞
−∞ xP (x)xdx´∞
−∞ xP (x)xdx

= Πn (62)

This correlation function is compared with experimental results in Fig. S1.

III. EXPERIMENTAL METHODS

All experiments were conducted with E. coli strain WM4419 (derived from wild type MG1655).

PDMS devices modelled after the “Mother Machine”[3] were constructed and sonicated in IPA and

DI water before bonding to glass to remove PDMS waste from the channels. Cells were grown

overnight at 37C in 20 mL of LB media. Devices were subjected to oxide plasma treatment for 10

minutes at 70 watts to decrease the hydrophobicity of the microchannel surfaces and subsequently

coated with a 10 mg/mL BSA solution. A solid cell pellet was produced via centrifugation of the

cultured cells at 5000 rpm for 5 minutes at 4C. The suspension was discarded and the cell pellet

was mixed with 1.5 mL LB media to produce a concentrated solution that was then injected into

the device by syringe. The cells were then loaded into the microchannels through centrifugation of

the devices at 5000 rpm for 40 min at 4C. The device was then prepared for time-lapse microscopy

on a stage kept at approximately 33C in an incubating box (Pathology Devices). Phase contrast

microscopy was conducted with a 100X oil objective on a Nikon TE2000 (Nikon corp.). Note that

for processing, septum formations were determined by eye due to poor image resolution.

During microscopy, 5 different growth conditions were tested: 1:2 LB:autoclaved water solutions

with the addition of 0.40 g/mL sorbitol (high hypertonic stress), 0.33 g/mL sorbitol (medium

hypertonic stress), 0.22 g/mL sorbitol (low hypertonic stress), and 0 g/mL sorbitol (control) as well
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as a 1:100 LB:autoclaved water solution with the addition of 0.07 g/mL sorbitol (low nutrient stress).

In addition 0.001 g/mL BSA was incorporated into each growth condition to avoid further cell

adhesion. Eight pairs of media were tested where the cells were allowed to reach stable exponential

growth in the first condition before the growth medium was switched and the cells relaxed into

the stationary distribution corresponding to the second condition. The eight pairs were: (1) low

nutrient to control, (2) control to low nutrient, (3) low hypertonicity to control, (4) control to

low hypertonicity, (5) medium hypertonicity to control, (6) control to medium hypertonicity, (7)

high hypertonicity to control, (8) control to high hypertonicity. A relatively slow flow rate of

approximately 40 microliters per hour was maintained throughout the experiment apart from the

initial flow of fresh media into the device where a high flow rate of approximately 400 microliters per

hour was utilized to clear the device of excess cells and immediately following the medium switch for

some experiments. Even at the slowest flow rate used, it was confirmed through fluorescence imaging

that transfer of the media is fast relative to the timescale of the cellular response and diffusion of

the media within the tubing did not cause any issues. The medium was switched through manual

clips: two syringes were connected with a forked joint with one clip for each syringe. Only one

syringe (with its clip open) was placed on the syringe pump at any time while the other syringe

was set aside with its clip closed.

A total of 6510 cell divisions were analyzed for the construction of Figure 3. There were a

minimum of 374 and a maximum of 1804 divisions (mean of 813.75) observed for each experiment.

A representative fraction (min. 68, max. 265., mean 132.5) of these divisions observed at the

beginning and end of each experiment where the environment is constant were selected for the

construction of the distributions displayed in Figure 1 (of the main text). These distributions are

well described by shifted gamma distributions.

IV. DATA PROCESSING, FITTING, AND ANALYSIS

A. Processing

After the completion of each experiment, only channels that contained healthy cells throughout

the switch of the growth medium and past the point of relaxation into the final stationary state

were indexed. For each of these channels, every septum formation for the mother cell (the cell at

the bottom of of the channel) was recorded with the time elapsed from the beginning of microscopy.

Once all septum formations were recorded, cell cycle durations τ were calculated as the time elapsed
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between pairs of sequential septum formations and each corresponding division event was recorded

at the time of the second septum formation. Once the cell cycle durations were indexed, we calcu-

lated the final stationary distribution by constructing a normalized histogram of a representative

ensemble of cell cycles. We then calculated all the relevant statistical information (mean, variance,

etc.) from this distribution. In total, this information yields ρ(τ, n): the probability that the nth

cell cycle (relative to the start of microscopy) will be of duration τn - a measure of cell state as a

function of discrete time. To analyze the response dynamics we wanted a measure of cell state that

was continuous in time so we constructed ρ(τ, t): the probability that a cell is currently within a

cycle of duration τ at time t. To construct this object we first defined the cell state “trajectory

function” F (t) for each cell as follows, letting sn represent the time of the N th septum formation:

F (t) = τn, sn ≤ t < sn+1 (63)

We may see that ρ(τ, t) = ρ (F (t)). We used the median of the trajectory distribution to analyze

the response dynamics and fit the model to the data collected. A figure summarizing the data

processing is shown below:
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Figure S2: Data Processing: (from left to right) indexing cell cycle durations, calculating the stationary

distribution, and constructing the cell trajectory functions.

We would like to acknowledge an issue with this method of processing: during the step change

experiments which transition from rich media to poor media, the cells seem to respond before the

shock. This is due to the fact that cells that enter their cycle shortly before the switch attain a

large τ since they spend most of their cycle in the poor media; however, this cycle began before the

switch leading to an increase in < τ > before the media changes.
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B. Fitting

We have a transition probability of the form:

M(y → x) = M (y → x) =

√
b+ a

α2

π
G
(
x, yΠ, b+

a

α2

)
(64)

which when applied on an arbitrary Gaussian initial distribution, yields Gaussian distributions

corresponding to the nth generation with mean:

〈τ(n)〉 ≡ mn + µf = µf + Πnm (65)

where µf is the mean of the final distribution. Eventually, when environment is constant, we reach

a stationary distribution with a width parameter of:

c∗ =
2ab (1 + α) + a2

(
1
α2 − 1

)
α2b+ a

(66)

We need to relate these quantities to experimental observables to find expressions for a and b. This

is quite straightforward fitting to only the stationary distributions. Looking back at our form for

the autocorrelation function we find:

C (n) = Πn (67)

The constant adder model predicts that Π ≈ −1
4 [2] so we may solve for a and b in terms of c∗, the

width parameter for the stationary state, and Π:

a = c∗

 1 + α

(
1+ Π

α
1−Π

)
(

1
α2 − 1

)
+ 2(1+α)

α

(
1+ Π

α
1−Π

)
 =

c∗

2 (1 + Π)
for α = 1 (68)

and

b =
c∗

α

(
1 + Π

α

1−Π

)[
1 + α(

1
α2 − 1

)
(1−Π) + 2

(
1
α + 1

) (
1 + Π

α

)] =
c∗

2 (1−Π)
for α = 1 (69)

For the purposes of comparing to the main text, we may restate these relationships in terms of σ1,

σ2, coefficient of variation (CV ), and µ. Looking at the case where α = 1:

Π =


(
σ1
σ2

)2
− 1(

σ1
σ2

)2
+ 1

 (70)

σ1 =
√

2 (1 + Π)CV µ (71)
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σ2 =
√

2 (1−Π)CV µ (72)

CV =
σ1√

2 (1 + Π)µ
=

σ2√
2 (1−Π)µ

(73)

In fitting the model parameters this way, we have relied on our hypothesis that M is completely

determined by the current environment φ. Additionally, we want to fit a and b directly to the

response curve both for direct comparison with experiment and to probe the validity of this as-

sumption. Fitting this way is a little more challenging. We still identify c∗ as the width parameter

for the stationary state, after the switch, and will arrive at the same expressions; however, we do

not know Π a priori. Instead we must fit it to the experimental response curve. While constructing

fitting rules, we must keep in mind that the model predicts mean division time 〈τ〉 ≡ m + µf in

discrete generations where generation zero refers to the last generation at steady state with µi and

a, b before the application of the new transition probability and generation one refers to the first

generation after application. In the real system, however, the cell cycles are not phase locked and

the identification of generations “zero” and “one” is poorly defined. This problem did not come up in

the discussion of data processing because we constructed the cell trajectories F (t) which are defined

in real time. (We have checked that cell cycle phase is uniform and cells are not synchronized in

the Mother Machine.) We can generate matching trajectories from the model results by assuming

that the cell cycle phase distribution is uniform. This means that if a population of cells with a

fixed average cell cycle duration 〈τ〉 = m + µf is monitored beginning at time t0, the probability

density for observing the first division is uniform from t0 to t0 +m+ µf .

If we let t0 represent the time of the growth medium switch we may construct the average cell

cycle duration trajectories Gk(t) for an ensemble of M cells (indexed by k) as follows:

Gk(t) =


m+ µf

mn + µf

−(m+ µf ) ≤ t < t0 +
(

2(k−1)
M − 1

)
(m+ µf )

t0 +
(

2(k−1)
M − 1

)
m+

n−1∑
i=1

mi ≤ t < t0 +
(

2(k−1)
M − 1

)
m+

n∑
i=1
mi

(74)

This ensemble represents a population of idealized cells that always divide in time mn + µf for

their nth generation relative to the application of the new transition probability but differ in the

phase of the cell cycle. Gk(t) is uniquely defined given mn and the time of the medium switch.

Further we know that given µi and µf taken from the experimental values for the median cell state

(i.e. median(F (t))) at the time of the switch and the end of the experiment, the mn are uniquely

defined up to the constant Π:

mn = median(F (t∞)) + Πn (median(F (t0))−median(F (t∞))) (75)
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Given this expression, we found the value for Π corresponding to the least squared error between

median(F (t)) and Gk(t). Given both Π and c∗ we may solve for a and b as we did for the stationary

case above. A figure illustrating how we find the best Π for the data is shown below:
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Figure S3: Data Fitting: (from left to right) predicted mean cell cycle durations indexed by generation

(discrete time), conversion to real time, and fitting the parameter Π via a least squared error match of the

set of theoretical real time curves G(t) to the experimental curve median(F (t)).

C. Analysis

Here we display the curves used for data fitting and discuss the trends observed across all

experiments. In Fig. S4 and S5, all single cell trajectories F (t) are plotted in yellow along with

the median(F (t)) displayed in black and the model result in blue. Below in Fig. S4, we compare

experimental and model results where a and b were fit using only the final stationary distribution.
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Figure S4: Single cell trajectories F (t) are plotted in yellow along with the median(F (t)) displayed in

black and the model fit to the final stationary distribution in blue. The plots correspond to the following:

Experiment 1, increase nutrient; Experiment 2, decrease nutrient; Experiment 3, decrease osmolarity I;

Experiment 4, increase osmolarity I; Experiment 5, decrease osmolarity II; Experiment 6, increase osmolarity

II; Experiment 7, decrease osmolarity III; Experiment 8, increase osmolarity III.

In Fig. S5, we compare experimental and model results where a and b were fit directly to the

full response curve. Note, this is the fit that corresponds to Figure 3 in the main text. We see the

response curves corresponding to the model fit to only the stationary distributions (Fig. S4) are

fairly consistent with those returned from a least-squared error fitting.
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Figure S5: Single cell trajectories F (t) are plotted in yellow along with the median(F (t)) displayed in black

and the least-squared error model fit in blue. The plots correspond to the following: Experiment 1, increase

nutrient; Experiment 2, decrease nutrient; Experiment 3, decrease osmolarity I; Experiment 4, increase

osmolarity I; Experiment 5, decrease osmolarity II; Experiment 6, increase osmolarity II; Experiment 7,

decrease osmolarity III; Experiment 8, increase osmolarity III.

Examining the cell responses to environmental changes, the trend across the relaxation exper-

iments where the environmental stress is removed (odd numbered experiments - top row) is quite

clear: as the variance (and mean) of the distributions before the environmental change increase, the

response times remain roughly constant and thus the response speed significantly increases. For the

shock experiments where the stress is induced (even numbered experiments - bottom row), as the

mean of the final distribution increases the response time marginally increases and the overshoot

of the final mean significantly increases.

Additionally, we show a comparison between the experimental and model (least-squared error)

cell cycle duration distributions for the first three generations after the media switch in Fig. S6

and S7. Here "Generation 1" is defined to be the collection of cell cycles for which the first septum

formation occurred before the media switch and the second septum formation occurred after the

media switch.
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Figure S6: A comparison of the experimental and model cell cycle duration distributions for the first three

generations after the media switch. Here "Generation 1" is defined to be the collection of cell cycles for

which the first septum formation occurred before the media switch and the second septum formation occurred

after the media switch. Experiments 1-4 are shown: Experiment 1, increase nutrient; Experiment 2, decrease

nutrient; Experiment 3, decrease osmolarity I; Experiment 4, increase osmolarity I.
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Figure S7: A comparison of the experimental and model cell cycle duration distributions for the first three

generations after the media switch. Here "Generation 1" is defined to be the collection of cell cycles for which

the first septum formation occurred before the media switch and the second septum formation occurred after

the media switch. Experiments 5-8 are shown: Experiment 5, decrease osmolarity II; Experiment 6, increase

osmolarity II; Experiment 7, decrease osmolarity III; Experiment 8, increase osmolarity III.
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In addition to our theoretical fit and the discussion of the trends in the variance values across

experiments, we also desired an empirical method of comparison (shown to the right in Fig. 4 of

the main text). Response speed and absolute response time proved to be poor measures as nearly

half of the data is non-monotonic and, as stated above, the response time varied little across the

relaxation experiments. Instead we defined the following measure ∆: the higher of the initial or

final mean division time subtracted from mean division time of the total distribution over the first

λ = 500 minutes succeeding the environment shift, i.e.

∆ ≡

 1

Ncells

∑
Ncells

[
1

λ

ˆ λ

0
F (t)dt

]−max (µi, µf ) (76)

The limit of 500 minutes was selected as it is the minimum time within which all responses are

complete. This is a measure of the efficiency of response. A ∆ value greater than zero means

during response, cells were forced to divide even slower than the slowest dividing stationary state.

A ∆ value less than zero means during response, cells were able to primarily divide faster than

the slowest stationary state. Fig. S8 displays the ∆ calculation and comparing the trends across

variance and shift magnitude (the magnitude of the difference between the initial and final mean

division times).
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Figure S8: Calculation of ∆ from Eq. (76). (A) The mean division time during response,
1

Ncells

∑
cells

1
λ

´ λ
0
F (t)dt, is plotted as a black circle against the initial mean in blue and the final mean

in red for each experiment. (B) The ∆ values plotted against the environmental shift magnitude |µf − µi|.
(C) The ∆ values plotted against variance, 〈δτ2〉, before the environmental shock. For (B) and (C) the

grayscale symbols indicate alternative ∆ values calculated with λ = 250. We may note that the trends are

conserved across λ = 250 and λ = 500.

Three of the four shock experiments display a ∆ value greater than zero indicating an ineffi-

23



cient response where the final mean was overshot. As expected ∆ increases with increasing shift

magnitude. The four relaxation experiments all display negative ∆ values which increase in mag-

nitude, and thus improve response efficiency, as variance of the steady state distribution before the

environmental change increases.

V. APPENDIX I: SUPPLEMENTARY MICROFLUIDIC EXPERIMENTS

Here we present data collected from a different strain (WM4584 derived from MG1655) in a

larger version of the "mother machine" where cells are less confined within the microchannels.

Imaging was also conducted on a different microscope (a Zeiss Axio Observer). We show this data

to explicitely display ergodicity of the culture in even the slowest growth condition tested. We also

show the repeat of experiment eight for the alternate strain in the alternate device and note that the

response is qualitatively different for this strain in the modified mechanical environment in the same

media. Figure S9 displays the results of the shock experiment (8) control to high hypertonicity.
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Figure S9: Media switch from control (1:2 LB:autoclaved water solution) to high hypertonic stress (+0.33

g/mL sorbitol). Both solutions contain 0.001 g/mL BSA

Figure S10 displays the autocorrelation function for the ensemble grown under high osmotic
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stress as well as an overlay of the ensemble distribution with a sample of individual cell histograms.

The autocorrelation function displays no long term memory, and combined with the single-cell

distributions, confirms that the CCDD is ergodic even for this slowest-growth state tested.
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Figure S10: On the left, the autocorrelation function, C(n) = 〈δτ(n′)δτ(n′ + n)〉/〈δτ2〉, and on the right,

the scaled ensemble distribution overlayed with repersentative single-cell distributions (histogrammed).

VI. APPENDIX II: SUPPLEMENTARY BULK EXPERIMENTS

In an effort to reproduce similar results in bulk, and to test temperature variation response, two

bulk experiments were conducted. For each experiment cells were cultured overnight at 37C in 20

mL of LB media and in the morning a sample was removed from the original culture chamber. This

sample was grown in a bulk culture of 1:2 LB:autoclaved water solution with the addition of 0.001

g/mL BSA until the optical density (OD) reached thirty percent at which time the new culture was

diluted by a factor of three reducing the OD to ten percent. At the time of dilution, the temperature

of the culture was also switched and at that second temperature, the cells were observed until the

optical density reached forty percent. The temperature increase experiment was conducted with a

culture grown at 22C and switched to 37C. The temperature decrease experiment was the reverse

(37-22C). The bulk doubling times were calculated simply by finding the time required for the
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optical density to double. Precisely, the bulk doubling time at time t was calculated as the time

that elapsed between t and the time at which the optical density was half its current value i.e.:

Doubling T ime(t) = t− t′, OD(t′) =
1

2
OD(t) (77)

To calculate the doubling times near the time of the switch, the OD curve was expatiated backwards

in time in accordance with the expected growth curve for a culture with the known initial doubling

time τ0:

OD(t− τ0) =
1

2
OD(0) exp

(
ln(2)

τ0
t

)
, 0 ≤ t < τ0 (78)

A figure displaying the OD curves (where the expatiated portions are plotted as dashed lines) and

doubling times are shown below:
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Figure S11: (A) OD curve for the temperature increase experiment - at time 0 the temperature is increased

from 22C to 37C. (B) OD curve for the temperature decrease experiment - at time 0 the temperature is

decreased from 37C to 22C. C.) bulk doubling time curves. The portions of the curves expatiated backwards

in time from the temperature switch are displayed as dashed lines.
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It is important to note that the physiological changes during temperature variation may be very

different from those during nutrient or osmotic variation. Additionally in these bulk experiments,

unlike the microfluidic work of the main text, cell-cell signaling is possible which may play an

important role; and even without signaling, the instability of the environment (variable and growing

OD) may lead to time varying mean cell behavior (e.g. mean division time, mean cell size, etc.)

unlike what has been observed in the stable microfluidic environments. It has been shown that

cell density, which is non-uniform and time varying in bulk conditions, plays an important role in

modulating cell metabolism [7]. Expression levels of important proteins is a strong function of OD.

Nonetheless, one can observe that the relaxation response (temperature increase) is faster than the

shock (temperature decrease) which mirrors the microfluidic results.

It may also be interesting to note that during the bulk investigation, cells were cultured in the

nutrient poor media (1:100 LB:autoclaved water solution with the addition of 0.07 g/mL sorbitol

and 0.001 g/mL BSA) until the OD no longer varied in an attempt to probe the cell density at

which the culture transitioned to stationary phase. We found that growing on the poor media,

cells reached stationary phase at an OD ≈ 0.1 which is about 25% the value corresponding to

growth on the rich media. This result, while perhaps unsurprising, merits discussion due to the

practical concern that many spectrophotometers cannot accurately measure OD below 0.1 making

a measurement of the bulk growth rate impossible using the method described in this section.

This highlights another benefit of utilizing the “mother machine”: this microfluidic device not only

enabled precise time-varying control of the environment impractical on the bulk scale, but also the

study of stable growth conditions that might not be adequately characterized by spectrophotometry.
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